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1 Introduction

A partition of a nonnegative integer n is defined to be a non-decreasing sequence of integers that
sum to n. We define the partition function p(n) to be the number of partitions of the integer n,
and by convention we let p(0) = 1.

Example 1 (p(4) = 5). The five partitions of 4 are:

1+14+14+1=4

1+14+2=4
1+3=4
2+2=4
4=4

We call the integers that sum to n the parts of the partition. Throughout this paper, we are
often interested in the number of partitions that satisfy some condition, for example partitions
with odd parts. For this, we use the notation p(n | condition). A large number of surprising
identities arise among the number of partitions subject to certain constraints, two of which are the
Rogers-Ramanujan identities. These can be stated

(n | parts = £1 (mod 5)) = p(n | 2-distinct parts), (1.1)
and
(n | parts = £2 (mod 5)) = p(n | 2-distinct parts, parts > 2). (1.2)

Here, 2-distinct parts means that every part differs by at least 2. For example, the only partitions
of 4 with 2-distinct parts are the partitions 1 4+ 3 and 4. It is easy to verify that these results hold
for the case n = 4, but in order to prove partition identities we need our results to hold for all
values of n.

There are multiple techniques that can be used to extend results such as this one to all values
of n. In this paper, we will present two of these techniques, along with some concepts important
to integer partitions. We will then provide a proof overview of the Rogers-Ramanujan identities.

2 Bijective Proofs

To prove partition identities, we could attempt to verify the number of partitions subject to our
constraints are equal for every value of n, as we did when n = 4. However, since n ranges to



infinity, this is not possible. Naturally, we could try to find an explicit expression for both sides.
But without any simple function such as a polynomial in n for the number of partitions, this
approach fails.

Instead, to show that the number of partitions on the left-hand side is equivalent to the number
of partitions on the right-hand side for all n, we can show that every partition on the left side of the
identity is paired with a unique partition from the right and vice versa. Such a one-to-one pairing
between two sets of partitions is a bijection. Hence, to prove a partition identity, we just need to
find a bijection between partitions.

Euler was the first known mathematician to discover and prove a partition identity, which is
stated as follows:

p(n | odd parts) = p(n | distinct parts) for n > 1. (2.1)

A bijection for Euler’s identity must transform a partition of odd parts into a partition of distinct
parts. The inverse must do the converse.

From odd to distinct parts: Distinct means that there can be at most one of each part. Thus,
whenever there are two of any part, we can merge them into one of double size. We repeat this
procedure until all parts are distinct.

1414141414343 1+(14+1)+(1+1)+(34+3)
—14+2+24+6
—14+(2+2)+6
—1+4+6

From distinct to odd parts: The inverse of merging two equal parts is splitting an even part into
two halves. We repeatedly split even parts until only odd parts remain.

14+4+4614+(2+2)+(3+3)
142424343
14+ 1+ +(1+1)+3+3
1414141414343

Example 2. For n = 8, the bijective correspondence for Fuler’s identity is as follows:

1+7< 147
3+5<3+5
1414145+ 1424+5
1+14+34+3<24+6
1+14+1414+14+3<1+3+4
1+414+141+1+14+14+1438

Unfortunately, attempts to find a simple bijective correspondence for the Rogers-Ramanujan
identities fails. While combinatorial proofs of this identity exist, they require much more compli-
cated methods. In order to prove this result we need to introduce another powerful tool used to
study partitions.



3 Generating Functions

Although we provided a bijective proof for Euler’s identity, Fuler primarily represented integer
partitions using generating functions. The idea behind generating function uses the following
fundamental principle of algebra:

qr . qs — qr+s
This idea can be used in integer partition as follows. Suppose S = {ni,ns,n3} is a set of positive
integers. Then

(1 4 qnl)(l + qm)(l + qn3) =1+ qnl + qn2 + qTL3 + qn1+n2 + qn1+n3 + qn2+n3 + qm-l-nz-l-n?, (3_1)

exhibits in the exponents all the possible partitions using distinct elements of S. The coefficient of
q" is the number of such partitions of n.

Example 3. Let S = {2,4,6}. Then the polynomial from eq. (3.1) is
1+ +¢* + 265 + ¢ + ¢'° + ¢

This function is the generating function for partitions in distinct elements of {2,4,6} and the
coefficient of ¢%, 2, represents the number of such partitions of 6 (2 + 4 and 6).

If we extend S to be the set of all positive integers, then we can conclude that the generating
function for p(n | distinct parts) is

o0
Zp (n | distinct parts)q H 14+4¢") (3.2)
n=0 n=1

If we instead wish to create a generating function that allows for us to include multiple copies
of the element n, we would have the generating function 1+ ¢ + ¢ + ¢*" + ¢ + ...

Example 4. The generating function for the number of ways of changing n cents into pennies,
nickels, and dimes is

A4+g+P++. )1+ +¢0+¢"+ .. )A+¢""+ ¢+ +...).

Using the following property of the sum of an infinite geometric series,

> 1

g 2t =—— |x| <1,
1—=x

n=0

The generating function can be rewritten as

1
(1-q)(1—¢>)(1—g'0)

where |¢| < 1.

We can again extend this result to all integers to get the generating function for p(n). We have

> =] 1 :
n=1

(3.3)

where |¢q| < 1. Throughout the remainder of this paper we will assume |g| < 1.



3.1 Euler’s Identity Revisited
Recall from eq. (2.1) that

p(n | odd parts) = p(n | distinct parts) for n > 1.

To prove Euler’s identity using generating functions, we consider the related generating functions:

(0.9]
1
Zp(n | odd parts)q" = H T
n=0 n odd
and, by eq. (3.2),

[e.9] o0

Zp(n | distinct parts)q™ = H (1+4¢").

n=0 n=1

Now,

oo

[Ta+d") =0+ +AH1+)(1+¢")(1+¢) -

n=1
- (D) (L) (L) (L) (%) -
1
(1-q)(1—g*)(1—qd)--

1
-1

n odd

Here we have proven a combinatorial result through the manipulation of equations.

3.2 Gaussian Polynomials

In this section we will introduce properties of polynomials in ¢ called Gaussian polynomials (also
called g-binomial numbers or g-binomial coefficients) that will be helpful in proving the Rogers-
Ramanujan identities.

The g¢-binomial numbers are g-analogs of the binomial numbers. The well-known binomial
numbers have the following formula:

N N!
=——— for N>m>0.
(m) ml(N —m!) or ==

This can be rewritten as

<N> _N(N-D(N=2)---(N—m+1)

m m(m—1)(m—2)---1

The analogous formula for ¢-binomial numbers is

[N] _(1=gM)=¢"h - (A= g"
m (I—¢m)@—gm 1) (1-q)

(3.4)



It can be shown using an argument with lattice paths and integer partitions that more generally,
the g-binomial numbers can be defined equivalently as

]

= Zp(n | < m parts, each < N)q".
m

n>0

This is a natural refinement such that at the limit ¢ — 1, we recover (N ;m) Many of the
properties of the binomial numbers also carry over to the ¢g-binomial numbers. For example, the
g-binomial numbers have the symmetric property

N+m| [N+m
m - N |
There exists a well-known recurrence relation for binomial numbers that can be written as
N+m\ (N+m-1 n N+m-—1
m - m m—1

This recurrence can be extended to ¢g-binomial numbers using the following argument with integer
partitions:

p(n | < m parts, each < N)¢" = p(n | < m — 1 parts, each < N)g"
+ q"p(n —m | < m parts, each < N — 1)¢" ™.

Summation over n gives us the g-analog recurrence for g-binomial numbers:

[N +m] N+m-—1 m [N +m —1]
= ) 3.5
| m [ m—1 ] +4a N -1 (3:5)
A similar argument gives us the alternate recurrence:
[N +m] NIN+m—1] [N+m—1]
L m —1 { m—1 ]+ N-1 | (36)

Additionally, to prove the Rogers-Ramanujan Identities, we will need to know the limit formulas
for g-binomial numbers. For fixed m, by eq. (3.4),

. . H;V:I (1- qj)
lim = lim — — ‘
N—=oo |m N—o00 Hj:l (1_qj)l_[j:1 (1_qj)
IO (3.7)
[0, (1= ¢)I[2, (1 —¢d)
_ 1
HT:1 (1-¢7)
Then, for fixed my and mq, with R > S positive, by eq. (3.4),

RN +my [IE™ (1 - ¢9)

lim [ } = lim
; R—S)N+my— -
Moo SN ma ] W oe [IENE (1 — o) TG PN (1 - )

B I, (1 - ¢) (3.8)
52, (1= ) [T, (1= &)
1
I -4

5



4 The Rogers-Ramanujan Identities

Just like there is no simple bijection proving the Rogers-Ramanujan identities, there is no simple
generating function proof of the Rogers-Ramanujan identities. However, using Gaussian polyno-
mials and the following Jacobi’s triple product identity, we can prove a polynomial version of the
identities. We will only detail a proof overview of the Rogers-Ramanujan identities, and the full
proof referenced can be found in [1]. Many other versions of this proof are available.

4.1 Jacobi’s Triple Product Identity

The following identity can be proved by manipulating generating functions and is a powerful tool
for proving many results about generating functions in ¢ and z. We will use it in the proof overview
for the Rogers-Ramanujan identities.

Theorem 1 (Jacobi’s Triple Product Identity).

Z ann(n+1)/2 _ H (1 _ qn)(l +an)(1 + Z—lqn—l)‘
n=-—00 n=1

forlql <1, z#0.

4.2 Generating Functions for Rogers-Ramanujan identities

As in the first Rogers-Ramanujan identity (1.1), we can immediately see that the generating function
for parts congruent to +1 (mod 5) is

a 1
g (1 —=g=4)(1 —¢gon-1)’

and as in the second identity (1.2), we have the generating function for parts congruent to 42
(mod 5) is

oo

1
nHl (1= ) (1 =¢2)

For the left-hand-side of the identity, an arithmetic argument shows that for any partition of n
with exactly m 2-distinct parts there exists a corresponding partition of n—(1+3+---+(2m—1)) =
n —m? into at most m parts. Summing over all values of m, we get that the generating function
for all partitions with 2-distinct parts is

m2

- q
D BN e Ee e}

Similarly, we can find a generating function in the case with 2-distinct parts which are all greater
than 1,

m2+m

S q
1+mz::1(1Q)(1q2)...(1qm).

Hence we have that the two Rogers-Ramanujan identities are equivalent to

m?2 o0 1

[o.¢] q -
1+ mz:l 1-—q)(1—¢?)---(1—gm) H (1— g1 — gn-1)’ (4.1)

n=1



and

m2+m oo 1
1+Z 1_q 1_q ) (1_qm) _nl_[l(l_q5n—3)(1_q5n_2)- (4.2)

4.3 Proof Overview of the Rogers-Ramanujan Identities

To prove the Rogers-Ramanujan identities, we will first define four sequences of polynomials:

q) = i ¢ m (4.3)

Jj=0

_ i S m (4.4)

=0
> I 2n
_ _1)i ,d(55+1)/2
on(q) jZEOO( 1)Yq [n +2J} (4.5)
> R 2n + 1
_ —1)7i(55=3)/2
n) = 3 (Vs o (4.6)

The proof can then be summarized by the following steps:

Step 1: Show s,,(q) = sp—1(¢) + ¢"tn—1(q) using eq. (3.5)
Step 2: Show ¢,(q) — ¢"sn(q) = (1 — ¢")tn—1(q). using eq. (3.4).

Step 3: Use mathematical induction and the initial conditions so(q) = to(¢) = 1 to show that s,(q)
and t,(q) are uniquely defined for all n.

Step 4: Show that 0,(¢) and 7,(q) follow the same recurrence relations as s,(q) and t,(g) in Step 1
and Step 2 using the recurrence equations (3.5) and (3.6).

Step 5: Observe that because 0,(q) and 7,(q) have the same initial conditions as s,(q) and ¢,(q),
o0(q) = 10(q) = 1, paired with identical recurrence relations, we must have that s,(q) = o,(q)
and t,(q) = m.(q).

Once these steps have been achieved, we can see that

m2

1+ Z i=a 1_q g am, se(0) = Jim onle)
_ NS (gt L
PO e
e A=) =)A= ")
[Tz (T —q™)

J



using eq. (3.8) and Jacobi’s triple product identity, Theorem 1, with ¢ replaced by ¢° and z replaced
by —q~2. This results in the first Rogers-Ramanujan identity, eq. (4.1).
Similarly, we can see that

o m2+m
U T (g @ = Jim
o o 1
:jz_:oo(_l)qu(5j 3)/2m
e =™ =" (1 — ¢ )
[[h=: (1 —gq™)

O 1
- H (1— (1 — gm 1)

m=1
using (3.8) and Jacobi’s triple product identity with g replaced by ¢° and z replaced by —¢~'. This

results in the second Rogers-Ramanujan identity, eq. (4.2).
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